Science of NFL football Notes

Physical Science
Mr. Pickett

Watch the "Science of the NFL" videos and then work to answer the following questions with your group.
Vectors - Quarterbacks "Threading the Needle"

A \qquad has both speed and direction. The moment a football leaves a quarterback's hand it has velocity with includes both a \qquad and a \qquad An NFL quarterback can throw a ball at a speed of between \qquad and \qquad miles per hour. A velocity vector can be represented with an \qquad The parallelogram method can be used to find the \qquad of two vectors.

Draw a diagram showing the quarterback's velocity vector, a receivers velocity vector, the ball's velocity vector and the vector of the sum of the quarterback's and the ball's motion. (Use the parallelogram method)
\square

Kinematics - Running Backs avoiding tacklers

Kinematics uses three concepts to describe \qquad . These are: \qquad field
\qquad , and \qquad the back \qquad is the location on the field. speed is changing. A running back \qquad until he reaches top speed.

Calculate the average speed of the running back if he runs 40 yards in 4.26 seconds.
$(\mathrm{s}=\mathrm{d} / \mathrm{t}) \mathrm{s}=$ speed $\mathrm{d}=$ distance $\mathrm{t}=$ time
Calculate the acceleration of the running back if he reaches a top speed of $31.5 \mathrm{ft} / \mathrm{sec}$ in 1.2 seconds $\left(a=\underline{v_{f}-v_{i}}\right) \quad \mathrm{vf}_{\mathrm{f}}=$ final velocity $\mathrm{vi}=$ initial velocity $\mathrm{t}=$ time $\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}\right)$

Sketch a graph showing the difference between instantaneous time and average time.

An NFL punter can punt the ball up to \qquad feet in the air at \qquad miles per hour. Once the ball is in the air, it becomes what scientists would call a \qquad and travels in a path called a
velocity and \qquad velocity. The greater the speed the \qquad the velocity vector. As gravity tries to slow the ball down, the \qquad velocity vector gets smaller. eventually causes the ball to stop rising at the top of it trajectory. As it falls, the vertical velocity vector points \qquad . The \qquad velocity remains the same throughout the flight of the ball.

Draw the path of a football traveling in a flight that could be described as a parabola.

