Meeting Individual Needs

Directed Reading for Section 1 Temperature and **Thermal Energy Section 2** • States of Matter

Directions: Match the term in column I with the definition in column II. Write the letter of the correct definition

in the blank at left.	
Column I	Column II
1. kinetic theory of matt	ter a. a measure of the average kinetic energy of the particles of an object
2. plasma	b. state of matter with no definite shape but with definite volume
3. temperature	Willi delimite volume
4. heat	c. thermal energy needed to change 1 kg of a solid to a liquid at the melting point
5. solid	d. thermal energy needed to change 1 kg of
6. heat of vaporization	a liquid to a gas at the boiling point
7. specific heat	e. state of matter that has no definite shape and no definite volume
8. thermal energy	f. all matter contains particles that are
9. liquid	always in random motion
10. gas	g. state of matter with definite shape and definite volume
11. heat of fusion	h. state of matter without a definite shape or volume made of charged particles
	i. thermal energy that flows from a higher temperature to a lower temperature

- j. thermal energy needed to raise the temperature of 1 kg of a material 1°C
- k. sum of the kinetic and potential energy of the particles in a material

Temperature and Thermal Energy

	the italicized term makes each statement true or false. If the statement is true, ement is false, write in the blank the term that makes the statement true.
1.	Particles that make up matter are in constant motion.
2.	The faster particles move, the <i>less</i> kinetic energy they have.
3.	Temperature is the measure of the average kinetic energy of the particles in an object.
4 .	When temperature <i>increases</i> , the average kinetic energy of the particles decreases.
5.	The thermal energy of an object is the <i>total</i> energy of the particles in a material.
6.	A thermometer is used to measure the specific heat of a material.
7.	Thermal energy flows from a <i>higher</i> temperature to a lower temperature.
8.	Heat is measured in <i>newtons</i> .
9 .	The same amount of different materials need <i>the same</i> amount of heat to have the same change in temperature.
10.	The amount of energy it takes to raise the temperature of 1 kg of a material 1 kelvin is the <i>specific heat</i> of the material.
11.	Water has a relatively <i>low</i> specific heat.
12.	Materials with a high specific heat can absorb a lot of energy and show <i>little</i> change in temperature.
	g questions about the thermal energy equation. y can be calculated using the equation $Q = m \times (T_f - T_i) \times C$.
a. In this equation, what	does Q represent?
b. What does <i>m</i> represen	nt?
c. What does $T_{\rm f}$ represen	nt?
d. What does T_i represen	nt?
e. What does C represen	ıt?

States of Matter

Directions: Look carefully at the graph. It was drawn from the data collected when a substance was heated at a constant rate. To heat at a constant rate means to add heat evenly as time passes. Use the graph to complete the paragraphs that follow.

At the start of observations, Point A, the substance exis-	ts in the 1.
state. The temperature at this point is 2.	As energy is absorbed, the
temperature of the substance rises at a constant rate for tw	wo minutes. At Point B, the temperature
is 3, and the solid begins to 4	The
temperature remains constant until the change from solid	l to 5 is
complete. It has taken three minutes to add enough energ	ry to melt the solid completely. From
Point C to Point D, the substance is in the 6.	state. Its temperature rises
at a constant rate to 7 The tem	perature remains constant while the
liquid changes to a 8 At Point I	E, the substance exists as a
9 Its temperature rises as energ	y is added.
When the gas cools, it releases energy. The cooling curv	ve will be the reverse of the warming
curve. Energy will be released as the substance changes from	om a 10to a
11 and also from a 12	to a
13 The amount of energy relea	sed during condensation will be the
same as the amount absorbed during vaporization.	

Overview **Heat and States of Matter**

Directions: Complete the concept map using the terms listed below.

Directions: Complete the concept map using the terms listed below.

define shape and volume particles liquids gases

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.